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Abstract. We study mechanism design where the payments charged to the agents
are not in the form of monetary transfers, but are effectively burned. In this set-
ting, the objective is to maximize social utility, i.e., the social welfare minus the
payments charged. We consider a general setting with m discrete outcomes and
n multidimensional agents. We present two essentially orthogonal randomized
truthful mechanisms that extract an O(logm) fraction of the maximum welfare as
social utility. Moreover, the first mechanism achieves a O(logm)-approximation
for the social welfare, which is improved to an O(1)-approximation by the second
mechanism. An interesting feature of the second mechanism is that it optimizes
over an appropriately “smoothed” space, thus achieving a nice and smooth trade-
off between welfare approximation and the payments charged.

1 Introduction

The extensive use of monetary transfers in the Algorithmic Game Theory is due to the
fact that so little can be implemented truthfully in their absence (see e.g., [14]). On the
other hand, if monetary transfers are available (and acceptable for the particular appli-
cation), the famous Vickrey-Clarke-Groves (VCG) mechanism (see e.g., [14]) succeeds
in truthfully maximizing the social welfare, i.e., the total value generated for the agents,
albeit with possible very large monetary transfers from the agents to the center. This
is acceptable as long as the payments generate revenue for the center (e.g., the gov-
ernment for public good allocation or the auctioneer for allocation of private goods),
since the funds are not lost, but are transferred to the center. Then, the funds could be
redistributed among the agents (see e.g., [9, 10]) or invested in favor of the society.

However, there are settings where the payments required for truthful implementa-
tion take the form of wasted resources, a.k.a. money burning, instead of actual monetary
transfers. One could think of “computational” challenges (e.g., captcha), waiting times
(e.g., waiting lists in hospitals [2] or in popular events or places), or reduction in ser-
vice quality (see also [11, 4] for more examples). In these settings, the natural objective
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is to maximize the net gain of the society, measured by the social welfare minus the
payments charged and usually referred to as the social utility (or the social surplus).

In the AGT community, the general idea of money burning and social utility max-
imization by truthful mechanisms was first considered by Hartline and Roughgarden
[11]. They considered single-unit and k-unit (unit demand) auctions and presented a
family of truthful prior-free mechanisms that guarantee at least a constant fraction of
the optimal (wrt. the social utility) Bayesian mechanism. Their mechanisms randomize
among a VCG auction and a randomized posted price mechanism. To show that these
mechanisms achieve an O(1)-approximation to the social utility extracted by an opti-
mal Bayesian mechanism with knowledge of the agents’ distribution (under the i.i.d.
assumption), Hartline and Roughgarden used Myerson’s theorem and characterized the
optimal Bayesian mechanism for single-parameter agents. They also proved that if we
compare the social utility of a truthful mechanism to the maximum social welfare, then
the best possible approximation guarantee for k-unit auctions is Θ(1+ log n

k ), where n
is the number of agents.

Contribution. In this work, we consider social utility maximization by truthful mecha-
nisms in a general mechanism design setting with m discrete possible outcomes and
multidimensional agents with positive valuations. Due to the fact that social utility
maximization is closely related to revenue maximization, coming up with a charac-
terization of the optimal (wrt. the social utility) truthful Bayesian mechanism, as in
[11], is a daunting task and far beyond the scope of this work. Instead, we evaluate
the performance of our mechanisms by comparing their social utility to the maximum
social welfare (achievable by an optimal algorithm that does not need to be truthful).
In fact, we seek for mechanisms that achieve nontrivial approximation guarantees wrt.
both social utility and social welfare. Our main contribution is two randomized truthful
mechanisms, based on essentially orthogonal approaches, that approximate social util-
ity within a best possible factor of O(logm), thus extending the last result of [11] to
our general mechanism design setting.

Probably the simplest candidate mechanisms for utility maximization are the ran-
dom allocation, where each outcome is implemented with probability 1/m, and the
VCG mechanism. Clearly, the approximation ratio of random allocation for both the
social utility and the social welfare is m, while VCG cannot approximate within a ratio
of m even for the natural case of uniform i.i.d. bidders. A natural way to approximate
social utility is through a careful tradeoff between VCG, which optimizes welfare but
may result in poor utility due to high payments, and random allocation on appropriate
sets of outcomes, which is truthful without payments and thus, translates all welfare
into utility.

Exploiting this intuition and building on the mechanism of [11, Theorem 5.2], we
present a randomized truthful mechanism that approximates both the social utility and
the social welfare within a factor of O(logm). The idea is to select a random integer
j from 0 to logm, and then, select a random outcome i among the best (in total value)
2j outcomes, and apply VCG payments. The key step in establishing the approxima-
tion guarantee is to show that in terms of utility maximization, the worst-case instances
correspond to single item auctions. Then, the upper bound of [11, Theorem 5.2] carries
over to our more general setting. Moreover, since the single item auction is a special
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case of our setting, the lower bound of [11, Proposition 5.1] implies that our approxi-
mation ratio is aymptotically tight.

Our second mechanism optimizes the social welfare (using VCG) over a carefully
defined subspace of the unit simplex with all probability distributions over the out-
comes. Intuitively, if we optimized over the unit simplex, we would have optimal wel-
fare but probably poor utility, due to high payments when the two best outcomes are
close in total value. So, we define a subspace that is slightly curved close to the vertices
of the unit simplex, thus achieving a significant reduction in the payments if the best
outcomes are close in total value. Due to this fact, this mechanism is partial, in the sense
that with probability 1−ε it may not implement any outcome (see [5] for another use of
partial allocation to induce truthfulness). For any ε > 0, the approximation ratio is 1+ ε
for the social welfare and O(ε−1 logm) for the social utility. Hence, this mechanism
achieves a best possible approximation ratio for the social utility and a constant approx-
imation for the social welfare, thus significantly improving on our first mechanism. The
main idea behind this mechanism is to “smoothen” the solution space so that we achieve
a smooth tradeoff between welfare approximation and the payments charged, where for
mechanisms close to the optimal, payments are reduced significantly faster that social
welfare. On the technical side, this mechanism bears a resemblance to proper scoring
rules in [8]. We believe that such mechanisms, which are based on carefully chosen
“smoothed” subspaces and provide smooth tradeoffs between approximation and pay-
ments, are of independent interest and may find other applications in mechanism design
settings with restricted payments.

Our mechanisms run in time polynomial in the total number of outcomes m and in
the number of agents n. In domains that allow for succinct input representation (e.g.,
Combinatorial Auctions, Combinatorial Public Projects), m is usually exponential in
the size of the input. This is not surprising, since our approximation guarantees are
significantly better than known lower bounds on the polynomial time approximability
of several NP-hard problems. In certain domains, we can combine our mechanisms
with existing Maximal-in-Range mechanisms so that everything runs in polynomial
time (e.g., for subadditive Combinatorial Public Projects, we can use the Maximal-in-
Range mechanism of [15, Sec. 3.2] and obtain a randomized polynomial-time truth-
ful mechanism that with O(min{k,

√
u})-approximation for the social welfare and

O(min{k,
√
u} log u)-approximation for the social utility, where u is the number of

items and k is the size of the project).

Related Work. There is much work on (mostly polynomial-time) truthful mechanisms
with monetary transfers that seek to maximize (exactly or approximately) the social
welfare. In this general agenda, our work is closest in spirit to mechanisms with frugal
payments (see e.g., [1, 6]). In addition to [11], Chakravarty and Kaplan [4] character-
ized the Bayesian mechanism of maximum social utility in multi-unit (unit demand)
auctions. More recently, Braverman et al. [2] considered utility optimization in health
care service allocation, but they focused on the complexity of computing efficient equi-
librium allocations, instead of approximate truthful mechanisms.

An orthogonal direction is that of revenue redistribution (see e.g, [3, 9, 10] and the
references therein). Although most of the literature focuses on maximizing the amount
of redistributed VCG payments, some positive results in this direction concern social
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utility optimization relaxing the requirement for social welfare maximization (see e.g.,
[10]). Our viewpoint and results are incomparable, both technically and conceptually,
to those in the area of redistribution mechanisms. A crucial difference is that in any
efficient redistribution mechanism, certain agents should receive payments (this is un-
avoidable if one insists on efficiency and individual rationality, see e.g., [12]). This
is infeasible our setting, where money-burning payment schemes (e.g., computational
challenges or waiting time) make redistribution infeasible.

2 Preliminaries and Notation

For any integer m, [m] ≡ {1, . . . ,m}. We denote the j-th coordinate of a vector x by
xj . For a vector x = (x1, . . . , xm) and i ∈ [m], x−i is x without coordinate i. For a
vector x ∈ Rm and some ` ≥ 0, x` = (x`1, . . . , x

`
m) is the coordinate-wise power of

x and ‖x‖` = (
∑m
j=1 x

`
j)

1/` is the `-norm of x. For convenience, we let ‖x‖1 = |x|.
Moreover, ‖x‖∞ = maxj∈[m]{xj} is the infinity norm of x.
The Setting. There is a finite set of possible outcomes O and we denote |O| = m. We
consider a set of n strategic agents, each with a private, non-negative value for each
outcome. For agent i, we denote his valuation as a vector xi ∈ Rm+ , that is, agent i
receives value xij for outcome j. We call the vector of all valuations x = (x1, . . . ,xn)
a valuation profile. For a valuation profile x, w(x) = x1 + . . . + xn is the vector of
weights for the outcomes. We will writew instead ofw(x) andw−i instead ofw(x−i)
when x is clear from the context.
Allocation Rules and Mechanisms. For a finite set S, ∆(S) denotes the unit simplex
over S. A (randomized) allocation rule is a function f : (Rm+ )n → ∆(O), mapping
valuation profiles to probability distributions over outcomes. Then fj(x) is the proba-
bility of outcome j on valuation profile x. It follows that the expected value of agent i
is xi · f(x). We consider allocation rules that are strongly anonymous, in the sense that
f(x) depends only onw(x), and we therefore write the allocation rule only in terms of
the weight vector.

A payment rule is a function p : (Rm+ )n → Rn mapping valuation profiles to
payment vectors. A mechanism is a pairM = (f, p) that given some valuation profile
x outputs the probability distribution f(x) and charges agent i the amount pi(x). We
focus on symmetric payment rules, and we therefore represent the amount charged to
agent i as p(x−i,xi). The expected utility of agent i on valuation profile x under
mechanismM = (f, p) is

xi · f(x)− p(x−i,xi)

and is the amount he aims to maximize.
We require that our mechanisms are truthful and individually rational in expectation.

A mechanism (f, p) is truthful (in expectation) if for any agent i, valuation profile x
and valuation x′i,

xi · f(x)− p(x−i,xi) ≥ xi · f(x−i,x
′
i)− p(x−i,x

′
i)

and individually rational (IR) if for any agent i and valuation profile x,

xi · f(x)− p(x−i,xi) ≥ 0
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Objectives and Approximation. Let some mechanismM = (f, p) and valuation pro-
file x. We denote the total payments ofM on input x by P [x] =

∑
i p(x−i,xi). The

quantities we are interested in maximizing are the social welfare and the social utility.
The social welfare ofM on x is SW [x] =

∑
i xi · f(x) = w · f(x) and the social

utility of M on x is U [x] = SW [x] − P [x]. The maximum possible social utility
and social welfare of the mechanism (ignoring truthfulness constraints) on input x is
‖w‖∞. We say that mechanismM, ρ-approximates social welfare (resp. social utility)
if for any input x, SW [x] ≥ 1

ρ‖w(x)‖∞ (resp. U [x] ≥ 1
ρ‖w(x)‖∞). For a mechanism

M that ρ1-approximates social welfare and ρ2-approximates social utility, we say that
it approximates social efficiency within (ρ1, ρ2).

Implementable Rules. For every set S ⊆ Rm+ , the mechanismM = (f, p) such that
f(x) = argmaxs∈S s ·w and p(x−i,xi) = w−i ·f(x−i)−w−i ·f(x) is truthful and
individually rational. This follows directly from the analysis of the VCG mechanism
[14]. We refer to such mechanisms as Maximal in Distributional Range (MIDR) and to
the corresponding payment rule as the VCG payment scheme.

3 Best-Possible Guarantees for Social Utility

In contrast to social welfare maximization, where monetary transfers can be used freely
to truthfully elicit the agents’ preferences, in the case of social utility maximization, the
transfers needed for the implementation of some mechanisms may be a significant part
of the social welfare, thus prohibiting any non-trivial approximation guarantees.

Since the model we consider is so rich, the single item auction is a special case
of it, when we restrict the domain to m outcomes and m agents, where agent i has
a value vi ≥ 0 for outcome i and zero for the rest. By proving lower bounds to the
approximation of social utility maximization in this special case, we get the same lower
bounds for the general model. Our main tool here is Myerson’s characterization of the
revenue of any truthful auction in the single parameter environment.

Theorem 1 (Myerson [13]). For any truthful mechanism M = (f, p) and valuation
profile x, where agent i has some value vi ≥ 0 only for outcome i and vi is drawn inde-
pendently from distribution F with cumulative distribution function FF (v) and proba-
bility density function fF (v), E[P (x)] = E[φ · f(x)], where φi = vi − 1−FF (vi)

fF (vi)
.

Theorem (1) completely deftermines the expected amount of payments for any
truthful allocation rule. This in turn determines the expected utility in terms of the al-
location rule. By plugging in an appropriate distribution we can come up with lower
bounds to the social utility of truthful mechanisms.

Corollary 1. The Vickrey Auction when bidders are drawn i.i.d. from the uniform dis-
tribution U(0, 1), cannot approximate social utility within a factor better than m.

This shows that the VCG mechanism for the natural case of uniform i.i.d. bidders
performs no better that a random allocation. By aiming to maximize the social wel-
fare, it has to charge every bidder his critical price which results to a high amount of
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payments, negating the welfare it produces. We therefore need to come up with mech-
anisms that instead of maximizing social welfare, employ suboptimal allocations to
reduce payments, while preserving some amount of welfare. Our goal is to achieve the
best possible worst-case guarantee for social utility maximization. A lower bound on
the best approximation ratio in our setting can be obtained from [11, Proposition 5.1],
which we prove here for completeness.

Corollary 2 ([11]). No truthful mechanism can approximate social utility within a fac-
tor of o(logm).

Proof. If agents are drawn from the exponential distribution, that is fE(x) = e−x,
FE(x) = 1− e−x, then φi = vi − 1 and by applying Theorem (1) we get that

E[P (x)] = E[w · f(x)− |f(x)|] = E[SW [x]− |f(x)|]

and by linearity of expectation E[U [x]] ≤ 1 It is straightforward to show that the ex-
pectation of the maximum of m i.i.d. exponential random variables equals Hm where
Hm the m-th harmonic number. Then

E[U(x)] ≤ E
[
‖w‖∞
Hm

]
and by the probabilistic method we get that there is some profile x for which the ap-
proximation ratio is logarithmic. ut

We will now describe a mechanism that matches this lower bound in the general
domain.

Definition 1. For some k ∈ [m], the Topk allocation rule on input x, orders outcomes
in decreasing weight order, w1 ≥ . . . ≥ wm (breaking ties arbitrarily) and assigns
probability 1

k to the first k. Formally, Topk(x) = argmaxs∈Sk
s ·w, where Sk is the

set of vectors in Rm+ with exactly k coordinates equal to 1
k and m− k equal to 0.

Since Topk are welfare maximizers, they can be turned into truthful and IR mecha-
nisms with the VCG payment scheme. We denote mechanisms of this family byMk =
(Topk, pk). Each of these mechanism achieves different approximation guarantees with
respect to social welfare and social utility in different settings, with respect to k. Thus
by randomizing over them we can provide worst-case guarantees. In Mechanism 1 we
achieve such an optimal social utility approximation guarantee by randomizing over
exponentially increasing values of k. For simplicity we assume that m is a power of 2.

Mechanism 1 A logm-approximate mechanism for Social Utility
Choose j uniformly at random from {0, 1, 2, . . . , logm}
Let k ← 2j

Output the probability distribution Topk(x) over outcomes
Charge agent i the amount w−i · Topk(x−i)−w−i · Topk(x)
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The complete mechanism is randomization over Mk for some k independent of
the input. As a result, Mechanism 1 is truthful and IR as a whole. In order to quantify
the efficiency of the mechanism in terms of utility maximization, we first show that
the worst-case instances are those of the single item auction, that is for each outcome
i there is exactly one single-minded agent with valuation vi for it (a bidder i is called
single-minded if his utility is vi ≥ 0 for some outcome j ∈ [m] and zero for the rest).

Lemma 1. For any valuation profile x = (x1, . . . ,xn), the utility of Mechanism 1 on
x is higher than the utility on the valuation profile y = (y1, . . . ,ym), where yi is a
single-minded agent for outcome i (yij = 0 for any i 6= j).

Proof (sketch). Since the complete mechanism is a randomization over mechanisms
Mk is suffices to show this property for each Mk separately. We prove the claim in
two steps:

– First we show that if an agent has positive value for multiple outcomes, splitting
this agent into single-minded agents (one for each outcome) can only decrease the
total utility. This holds since the “competition” between agents is increased, and
as a result, so do the payments, thus decreasing the total utility (the social wel-
fare remains unaltered since the mechanism depends only on the weight of each
outcome). By induction we transform any input to one with single-minded agents
without increasing the utility.

– Then we show that if there are multiple single-minded bidders for the same out-
come, joining their values into a single agent can only decrease the total utility.
The reason for this is that the value the agents must “prove” (in the form of pay-
ments) to the mechanism is initially split amongst them, and can only increase as
they aggregate their values. A single agent with high value is more critical for the
auction than many agents with small values. Again by induction we can transform
any input with single-minded agents to an input with one single-minded agent per
outcome.

The technical details can be found in the full version of the paper. ut

Theorem 2. Mechanism 1 is a (O(logm), O(logm)) approximation to the social effi-
ciency.

Proof. By Proposition (1) and the analysis of [11], Mechanism 1, is aO(logm)-approxi-
mation to social utility (and therefore social welfare). For the instancex = (x1, 0, . . . , 0),
where i is a single minded agent with value v1 for outcome 1, the approximation ratio
of logm is tight for both the welfare and the utility. ut

4 Optimizing Social Utility Without Sacrificing Social Welfare

The mechanism of Section 3, approximates utility within an optimal logarithmic fac-
tor. However, it also approximates Social Welfare within the same logarithmic fac-
tor. The impossibility of Corollary 2 implies that no mechanism can do better than
(O(1), O(logm))-approximate social efficiency. So the question of simultaneously op-
timizing social welfare stands. We answer this question affirmatively by presenting a
mechanism that optimizes welfare on a smooth probability space.
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Theorem 3. For any ε > 0, there is a mechanism M that
(
(1 + ε), (1+ε)

2

ε lnm
)

-
approximates social efficiency.

Remark 1. We can (O(1), O(logm))-approximate social efficiency simply by random-
izing, with constant probability, between the VCG mechanism and Mechanism 1. How-
ever, the mechanism of Theorem 3 follows from a more general approach that yields a
smooth mechanism and may be of independent interest.

4.1 The Mechanism

Similarly to the previous mechanism, we need a careful tradeoff between the VCG
mechanism and suboptimal allocations close to the uniform mechanism. We note that
the VCG mechanism optimizes the expected welfare by selecting the best outcome in
the unit simplex ∆(O). Here, we optimize on a surface that is close to the unit simplex,
but slightly curved towards the corners, in order to reduce the payments when the best
outcomes are close in weight. To this end, we define a mechanism by optimizing on the
following family of surfaces:

Sk =

{
s ∈ Rm+

∣∣ ‖s‖k ≤ 1

m1−1/k

}
(1)

For any k ≥ 1 or for k =∞, we define the mechanism fk(x) = argmaxs∈Sk
s ·w(x).

The reason VCG is not working for utility maximization is that if the weight vector
for e.g. 2 outcomes is (1, 1+ ε), the mechanism will output the second outcome instead
of a mixture of both. Such a mechanism requires a high amount of payments in order
to truthfully distinguish between the outcomes, leading to minimal utility. In contrast,
the mechanism with allocation fk outputs a “smooth max” over outcomes leading to a
reduced amount of payments (Figure 1).

o1

o2

w
f(x)

o1

o2

w

f(x)

o1

o2

w

f(x)

Fig. 1. Optimizing on the curved surfaces for m = 2

Lemma 2. The closed form of the mechanism fk is

fk(x) =
1

m1−1/k
w

1
k−1

||w
1

k−1 ||k
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Proof. The outcome of the mechanism is the vector s the optimizes w · s subject to
‖s‖k ≤ m−

k−1
k . By the Minkowski inequality, Equation (1) defines a strictly convex

space. Therefore the optimal point will lie on the boundary of the space, at the extremal
point in the direction of w. The boundary is defined by

‖s‖k =
1

m1− 1
k

⇐⇒ ‖s‖kk =
1

mk−1

and since we seek the extremal point in the direction ofw,w must be perpendicular to
the boundary at the optimal point. Therefore at the optimal point s∗ the gradient of the
surface is in the direction of w, that is there is some c such the

∇(‖s∗‖kk) = cw ⇐⇒ s∗ =
( c
k

) 1
k−1

w
1

k−1

Moreover s∗ needs to be to be on the surface, and therefore

‖s∗‖kk =
1

mk−1 ⇐⇒
( c
k

) 1
k−1

=
1

m
k−1
k ‖w‖

1
k−1
k

k−1

Substituting in the equation for s∗ concludes the proof. ut

We are interested in mechanisms with Sk close to S1, so we set k = `/(` − 1) for
some integer ` ≥ 1. The resulting mechanism is

f`(x) =
1

m1/`

w`−1

||w`−1|| `
`−1

(2)

The reader is invited to verify that the mechanism exhibits a smooth transition be-
tween the VCG mechanism (for ` → ∞) and the uniform mechanism (for ` = 1).
Moreover, the mechanism is partial in the sense that for ` ∈ (1,∞), |f`(x)| < 1 and
there is a positive probability that f` does not implement any outcome.

4.2 Social Welfare Guarantees

Lemma 3. For any ` ≥ 1, the mechanism of Equation (2) approximates the social
welfare within m1/`.

Proof. For any vector a
‖a`‖1

‖a`−1‖ `
`−1

= ‖a‖` (3)

The approximation ratio follows from

w · f(x)
||w||∞

=
1

m1/`

w ·w`−1

‖w`−1‖ `
`−1
‖w‖∞

Equation (3)
= m1/` ‖w‖`

‖w‖∞
≥ 1

m1/`

The analysis is tight since when x consists of a single-minded agent with unit value,
w · f(x) = 1

m1/` and ‖w‖∞ = 1. ut
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4.3 Bounds to the Revenue of the Mechanism

We will now study the amount of payments charged by the mechanism. The payments
of player i are computed as follows

p(x−i,xi) = w−i · f(x−i)−w−i · f(x)

=
1

m1/`

(
‖w−i‖` − ‖w‖` +

xi ·w`−1

‖w‖`−1`

)
Therefore we can now bound the total amount of payments

Lemma 4. For any integer ` ≥ 1, the mechanism of Equation (2) charges the set of
agents at most

P [x] ≤ 1

m1/`

(
1− 1

`

)
‖w(x)‖` (4)

Proof. By summing up the individual payments.
n∑
i=1

p(x−i,xi) =
1

m1/`

(
(
∑
i xi) ·w
‖w‖l−1`

−
∑
i

(‖w‖` − ‖w−i‖`)

)

=
1

m1/`

(
‖w‖` −

∑
i

(‖w‖` − ‖w−i‖`)

)

Therefore it suffices to show that∑
i

(‖w‖` − ‖w−i‖`) ≥
‖w‖`
`

The `-th power difference is bound as follows

‖w‖`` − ‖w−i‖`` = (‖w‖` − ‖w−i‖`) ·
l−1∑
k=0

(‖w‖l−1−k` ‖w−i‖k` )

≤ (‖w‖` − ‖w−i‖`) · `‖w‖`−1`

For the rest of the proof, for a vector a we denote its j-th coordinate by a[j]. Then∑
i

‖w‖`` − ‖w−i‖``
`‖w‖`−1`

≥ ‖w‖`
`

⇐⇒
∑
i

(‖w‖`` − ‖w−i‖``) ≥ ‖w‖``

⇐⇒
n∑
i=1

 m∑
j=1

w`[j]−
n∑
j=1

w−i
`[j]

 ≥ m∑
j=1

w`[j]

⇐⇒
m∑
j=1

n∑
i=1

(w`[j]−w−i
`[j]) ≥

m∑
j=1

w`[j]
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We will prove that the inequality holds for each term separately. It holds that

w`[j]−w−i
`[j] ≥ (w[j]−w−i[j])w

`−1[j] = xi[j]w
`−1[j]

and summing over i gives us∑
i

(w`[j]−w−i
`[j]) ≥

∑
i

xi[j]w
`−1[j] = w[j]w`−1[j] = w`[j]

concluding the proof. ut

4.4 Maximizing Utility

The utility of the mechanism is therefore

U [x] = w · f(x)− P [x] ≥ ‖w‖`
`m1/`

≥ ‖w‖∞
`m1/`

We summarize our results in the following theorem.

Theorem 4. For every integer ` ≥ 1, there is a truthful mechanism that (m1/`, `m1/`)-
approximates social efficiency.

The optimal point of this tradeoff in terms of utility maximization is when ` = lnm
(for simplicity, we assume in this section that if ` is not an integer, it is rounded to the
smallest integer exceeding the given value).

Corollary 3. There is a truthful mechanism that (e, e lnm)-approximates social effi-
ciency.

Alternatively by setting ` = lnm
ln(1+ε) we get the following.

Corollary 4. There is a truthful mechanism, that for any ε > 0,
(
1 + ε, (1+ε)

2

ε lnm
)

-
approximates social efficiency.

An interesting property of our mechanism, is that the set of outcomes can be a priori
restricted to some subset of the original outcome space. These mechanism are known
as Maximal in Range (MIR), and are tailored to obtain suboptimal welfare guarantees
in polynomial time for NP-hard problems. Our mechanisms can be run on these modi-
fied outcome spaces with no modification preserving welfare guarantees and providing
social utility logarithmic to the number of outcomes.

Corollary 5. Let some MIR mechanism with outcome space S, that a-approximates
social welfare. Then, it can be modified to ((1 + ε)a)-approximate social welfare and(

(1+ε)2

ε a ln |S|
)

-approximate social utility.

Remark 2. We have shown that the mechanism is IR in expectation, however there are
examples where players net negative utility for certain random outcomes. Nonetheless
the mechanism can be modified to be universally IR. Consider some agent i. Let Pi =
w · f(x−i) − w · f(x) denote the payments that induce truthfulness. If outcome j is
realized we charge this agent pij = Pi

xi·f(x)xij . It is easy to verify that the expected
payments are unaltered so truthfulness is preserved. Moreover, the mechanism is now
universally IR. A similar technique can be found in [7].
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